大致题意: 给你一棵带权树,每次使用道具可以将某条边的边权加\(1\),问你至少需要使用多少次道具,才能使每个叶子节点到根节点的距离相等。
贪心的思想
首先,我们应该先有一个贪心的思想。
不难发现,如果要将以\(x\)为根节点的子树内的所有边权加上\(val\),不如直接将\(x\)到\(fa_x\)的边权加上\(val\)更优。
这样一来就有一个基本思路:对于以\(x\)为根节点的子树,我们只需用最少的道具使每个叶节点到\(x\)的距离相等即可。
那么就可以用上 了。
核心过程
下面稍微讲一下\(DP\)的核心转移过程。
我们可以用\(f_{i}\)来表示使以\(i\)为根节点的子树的所有叶节点到\(i\)的距离相等所用的最少道具次数,用\(g_i\)来表示此时所有叶节点到\(i\)的距离,并用一个变量\(tot\)记录当前已操作了几个叶节点。
则对于\(i\)的一个子节点\(son\),若\(i\)与\(son\)之间的边权为\(val\),则无非有以下两种情况:
- \(g_{son}+val>g_i\)。对于这种情况,就说明之前操作过的\(tot\)个节点到\(i\)的距离全部偏小了,因此将\(f_i\)加上\(tot*(g_{son}+val-g_{i})\),并将\(g_i\)更新为\(g_{son}\)。
- \(g_{son}+val≤g_i\)。对于这种情况,我们只需将\(f_i\)加上\(g_i-g_{son}-val\)即可。
还有一个细节,就是注意每次要将\(f_i\)加上\(f_{son}\)!(不过我相信这么智障的错误除了我没人会犯)
代码
#include#define max(x,y) ((x)>(y)?(x):(y))#define min(x,y) ((x)<(y)?(x):(y))#define uint unsigned int#define LL long long#define ull unsigned long long#define swap(x,y) (x^=y,y^=x,x^=y)#define abs(x) ((x)<0?-(x):(x))#define INF 1e9#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))#define ten(x) (((x)<<3)+((x)<<1))#define N 500000#define add(x,y,z) (e[++ee].nxt=lnk[x],++deg[e[lnk[x]=ee].to=y],e[ee].val=z) using namespace std;int n,rt,ee=0,lnk[N+5],deg[N+5];struct edge{ int to,nxt,val;}e[2*N+5];class FIO{ private: #define Fsize 100000 #define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++) #define pc(ch) (FoutSize g[x]) f[x]+=1LL*tot*(g[e[i].to]+e[i].val-g[x]),g[x]=g[e[i].to]+e[i].val;//如果g[e[i].to]+e[i].val,就说明之前操作过的tot个节点到i的距离全部偏小了 else f[x]+=1LL*g[x]-g[e[i].to]-e[i].val;//否则,直接将f[x]加上g[x]-g[e[i].to]-e[i].val即可。 ++tot;//将tot加1 } } public: inline LL GetAns() {return (void)(DP(rt,0)),f[rt];} }TreeDP; int main(){ register int i,x,y,z; for(F.read(n),F.read(rt),i=1;i